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Abstract. By making use of the Landau–Ginzburg energy expansion up to the sixth power
of the sublattice magnetization density, the spontaneous volume magnetostriction and the
dependence on pressure of the Néel temperatureTN in an itinerant-electron antiferromagnet
are discussed. The antiferromagnetic moment is found to show first-order and second-order
transitions atTN —according to the values of the Landau coefficients. It is shown that the
difference between the spontaneous volume magnetostrictions atT = 0 andTN is large and the
P -dependence ofTN becomes anomalously large when a certain condition is satisfied by the
Landau coefficients.

Recently, the Invar properties of Fe alloys have been discussed using the Landau–Ginzburg
free energy [1–3]. The model is based on the coexistence of two states: non-magnetic and
magnetic. The free energy with respect to the magnetic momentM has two local minima
at M = 0 and finiteM, and is very similar to that in the two-γ -states model given by Weiss
[4]. On taking into account the magnetovolume coupling energy, Invar properties—the
large spontaneous volume magnetostriction and strong pressure dependence of the Curie
temperatureTC—have been obtained. These Invar anomalies have been shown to become
significant near the critical point between the first-order and second-order transitions atTC

[3].
The Invar anomalies are observed even in the antiferromagnetic FeMn and Fe(Ni, Mn)

alloys [5]. A large spontaneous volume magnetostriction is observed for the intermetallic
compound YMn2 [6]. In this paper, the Invar anomalies are discussed by extending the
model mentioned above to the antiferromagnetic system. For the sake of simplicity, the
antiferromagnetic moment is assumed to be described by a single wavevectorQ:

mQ(r) = ms(r) exp(iQ · r). (1)

Here, ms(r) is the staggered or sublattice magnetization density and is given by the
sum of the antiferromagnetic momentMQ in the z-direction and the fluctuating staggered
magnetization densitymQ(r):

ms(r) = MQez + 1√
V

∑
q

mQ(q) exp(iq · r). (2)

The Landau–Ginzburg free energy in the present case is written up to the sixth power
of the staggered magnetization densityms(r) as

f (r) = 1

2
aQ|ms(r)|2 + 1

4
bQ|ms(r)|4 + 1

6
cQ|ms(r)|6 + 1

2
DQ|∇ms(r)|2. (3)
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Here, the coefficientsaQ, bQ, cQ and DQ are different from those in the ferromagnetic
state. They should be obtained by band calculation in the antiferromagnetic state but have
not been estimated so far for any antiferromagnetic materials. However, such a form of the
expansion is very useful for discussion of antiferromagnetic properties, taking into account
the effect of spin fluctuations. It is noted that the last term in the right-hand side of equation
(3) denotes the non-local energy associated with the antiferromagnetic spin fluctuations.

The integration off (r) over the whole volume gives the magnetic part of the free energy
which is written as a functional ofMQ and the mean square amplitude of antiferromagnetic
spin fluctuations. The free energy thus obtained is written mathematically in the same
form as that in the ferromagnetic state [3]. Therefore, we get the same results as in [3].
The weakly antiferromagnetic state is stabilized whenaQ < 0 and bQ > 0. However,
the spontaneous volume magnetostriction is too small in this case and the Invar anomalies
cannot be obtained. On the other hand, the antiferromagnetic state becomes stable also
when the following relations are satisfied:

aQ > 0 bQ < 0 cQ > 0 aQcQ/b2
Q < 3/16. (4)

In this case the mode–mode couplingbQ among spin fluctuations is negative. The first-
order transition occurs atTN when 5/28 < aQcQ/b2

Q < 3/16. On the other hand, the
second-order transition occurs whenaQcQ/b2

Q < 5/28.
The magnetic equation of state for the staggered magnetic fieldHQ and sublattice

magnetizationMQ is obtained as

HQ = AQ(T )MQ + BQ(T )M3
Q + CQ(T )M5

Q (5)

where

AQ(T ) = χQ(T )−1 = aQ + 5

3
bQξQ(T )2 + 35

9
cQξQ(T )4 (6)

BQ(T ) = bQ + 14

3
cQξQ(T )2 (7)

CQ(T ) = cQ (8)

and the mean square amplitude of antiferromagnetic spin fluctuationsξQ(T )2 is given by

ξQ(T )2 = 1

V

∑
q

〈|mQ(q)|2〉. (9)

Here,χQ(T ) is the staggered susceptibility and〈· · ·〉 denotes a thermal average. AsξQ(T )2

is a monotonically increasing function ofT , then AQ(T ) or χQ(T )−1 has a minimum at
a certain temperature asaQ > 0, bQ < 0 and cQ > 0. This means that the staggered
susceptibility in the paramagnetic state shows a maximum in its temperature dependence,
which can be observed via the NMR measurements as the nuclear spin–lattice relaxation
time T1 is proportional toT −1χQ(T )−1/2 [7].

By taking into account the magnetovolume energy and elastic energy, the spontaneous
volume magnetostriction can be obtained as [8]

ωm(T ) = κCmv
{
MQ(T )2 + ξQ(T )2

}
(10)

whereκ andCmv are the compressibility and magnetovolume coupling constant. Here, the
volume dependences ofbQ, cQ andDQ are, for simplicity, neglected. The difference1ωm

(= ωm(0) − ωm(TN)) is given by

1ωm/ωm(0) = 1 − ηQ (11)
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where

ηQ = ξQ(TN)2/MQ(0)2 (12)

MQ(0)2 = |bQ|
2cQ

{
1 +

√
1 − 4aQcQ/b2

Q

}
(13)

ξQ(TN)2 = 3|bQ|
14cQ

{
1 + 2

√
7/5

√
5/28− aQcQ/b2

Q

}
(14)

for aQcQ/b2
Q < 5/28 and

ξQ(T ′
N)2 = 3|bQ|

14cQ

{
1 − 4

√
7
√

aQcQ/b2
Q − 5/28

}
(15)

for 5/28 < aQcQ/b2
Q < 3/16. TN and T ′

N are the Ńeel temperatures of the second-order
transition and of the first-order one, respectively. The calculated value ofηQ is shown in
figure 1 as a function ofaQcQ/b2

Q. The value ofηQ is about 0.28 foraQcQ/b2
Q = 5/28

which is the critical point between the first-order and second-order phase transitions.

Figure 1. ηQ as a function ofaQcQ/b2
Q obtained by calculation.

The pressure (P -) dependence ofTN is also obtained asaQ(P ) = aQ + 2κCmvP , while
bQ andcQ do not depend explicitly onP as in the ferromagnetic state [3]. We get

∂ξ(TN)2/∂P = − 3κCmv√
35 |bQ|

{
5/28− aQcQ/b2

Q

}−1/2
(16)

∂ξ(T ′
N)2/∂P = − 6κCmv√

7 |bQ|
{
aQcQ/b2

Q − 5/28
}−1/2

(17)

which are the same curves as those shown in figure 1 of [3].TN andT ′
N are proportional

to P −1/2 at aQcQ/b2
Q = 5/28 becauseaQ is linear in P . ∂TN/∂P and ∂T ′

N/∂P diverge
at this critical point. Moreover, the curve forξQ(TN) againstaQcQ/b2

Q, which is the same
as that ofξ(TC)2 againstac/b2 shown in figure 1 of [3], can be seen qualitatively as the
P -dependence ofTN because onlyaQ is linear inP . The material which shows the second-
order transition atTN without applied pressure may show the first-order transition under
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pressure ifaQcQ/b2
Q ∼ 5/28. The large spontaneous volume magnetostriction will also be

observed for such a material.
Finally we summarize our results obtained in the present paper foraQ > 0, bQ < 0 and

cQ > 0.

(i) The first-order transition occurs atTN for 3/16 > aQcQ/b2
Q > 5/28.

(ii) The second-order transition occurs atTN for 5/28 > aQcQ/b2
Q.

(iii) The staggered susceptibility shows a maximum in its temperature dependence for
aQcQ/b2

Q > 5/28.
(iv) Near aQcQ/b2

Q = 5/28 Invar-like behaviours, i.e., large spontaneous volume
magnetostriction and strongP -dependence ofTN , are derived.

These results have been obtained for the Landau–Ginzburg energy (3). Band calculations
for estimating the coefficientsaQ, bQ and cQ are desired for actual antiferromagnetic
materials.
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